The scaling of acceleratory aquatic locomotion: body size and tail-flip performance of the california spiny lobster panulirus interruptus
نویسندگان
چکیده
Tail-flipping is a crucial escape locomotion of crustaceans which has been predicted to be limited by increased body mass (M(b)). Given isometric growth, one may predict that with growth event duration will decrease as M(b)(-)(1/3), translational distances will increase as M(b)(1/3), translational velocity will be independent of M(b), translational acceleration will decrease as M(b)(-)(1/3), angular displacement will be independent of M(b) and angular velocity and angular acceleration will decrease as M(b)(-)(1/3). We tested these hypotheses by examining the scaling of 12 morphological variables, five kinematic variables and six performance variables of tail-flipping by the California spiny lobster Panulirus interruptus. Growth approximated isometry, which validated the use of the proposed scaling hypotheses. For animals from 1 to 1000 g M(b), the predicted scaling relationships for tail-flip duration and translational distance and velocity variables were supported; however, translational acceleration performance was much better than predicted. Predictions for rotation and rotational velocity variables were not supported, while the rotational acceleration data closely matched the predicted relationship. The increase in tail-flip duration as predicted suggests that muscle shortening velocity decreases with growth; the sustained acceleration performance (similar to findings for shrimp and fish fast-starts) suggests that muscle force output may increase at a greater rate than predicted by isometry. The scaling of rotational acceleration indicates that the torque produced during the tail-flip scales with a mass exponent greater than 1. Comparison of the tail-flip performance of Panulirus interruptus with those of other crustacean species reveals a wide range in performance by animals of similar body size, which suggests that the abdominal muscle may show interesting differences in contractile properties among different species.
منابع مشابه
The dynamics and scaling of force production during the tail-flip escape response of the California spiny lobster Panulirus interruptus.
The tail-flip escape behavior is a stereotypical motor pattern of decapod crustaceans in which swift adduction of the tail to the thorax causes the animal to rotate, move vertically into the water column and accelerate rapidly backwards. Previous predictions that a strong jet force is produced during the flip as the tail adducts to the body are not supported by our simultaneous measurements of ...
متن کاملNeurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)
The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...
متن کاملNeurodynamic control of the heart of freely moving spiny lobster (Panulirus japonicus)
The heart of the crustaceans has its own pacemaker neurons inside the heart, which are composed of 9 neurons. The neurons receive innervations of only three kinds of axons originated from the central nervous system; one pair of inhibitory and two pairs of acceleratory axons. Thus, in terms of the neural cardiac control from higher center, this system may have much more simplistic operation comp...
متن کاملBehavioral responses to variable predation risk in the California spiny lobster Panulirus interruptus
Shelter dwelling and gregariousness are behavioral strategies used by benthic marine organisms to reduce the risk of predator-induced mortality. For spiny lobsters, the relative and synergistic success of shelter dwelling and aggregation in reducing mortality may vary with the perceived risk of predation as well as the availability and size distribution of conspecifics and shelters. We tested h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 202 Pt 22 شماره
صفحات -
تاریخ انتشار 1999